There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(a + x)}{(b + x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{a}{(b + x)} + \frac{x}{(b + x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{a}{(b + x)} + \frac{x}{(b + x)}\right)}{dx}\\=&(\frac{-(0 + 1)}{(b + x)^{2}})a + 0 + (\frac{-(0 + 1)}{(b + x)^{2}})x + \frac{1}{(b + x)}\\=&\frac{-a}{(b + x)^{2}} - \frac{x}{(b + x)^{2}} + \frac{1}{(b + x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !