There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{z}{(z - {{e}^{x}}^{t})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{z}{(z - {{e}^{x}}^{t})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{z}{(z - {{e}^{x}}^{t})}\right)}{dx}\\=&(\frac{-(0 - ({{e}^{x}}^{t}((0)ln({e}^{x}) + \frac{(t)(({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})))}{({e}^{x})})))}{(z - {{e}^{x}}^{t})^{2}})z + 0\\=&\frac{zt{{e}^{x}}^{t}}{(z - {{e}^{x}}^{t})^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !