There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{z}{(z - {e}^{x}t)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{z}{(z - t{e}^{x})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{z}{(z - t{e}^{x})}\right)}{dx}\\=&(\frac{-(0 - t({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})))}{(z - t{e}^{x})^{2}})z + 0\\=&\frac{zt{e}^{x}}{(z - t{e}^{x})^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !