There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{y}{(y - {e}^{x}a)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{y}{(y - a{e}^{x})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{y}{(y - a{e}^{x})}\right)}{dx}\\=&(\frac{-(0 - a({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})))}{(y - a{e}^{x})^{2}})y + 0\\=&\frac{ya{e}^{x}}{(y - a{e}^{x})^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !