There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln(\frac{(4 - x)}{x}) + x - 1\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(\frac{4}{x} - 1) + x - 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(\frac{4}{x} - 1) + x - 1\right)}{dx}\\=&\frac{(\frac{4*-1}{x^{2}} + 0)}{(\frac{4}{x} - 1)} + 1 + 0\\=&\frac{-4}{(\frac{4}{x} - 1)x^{2}} + 1\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !