There are 1 questions in this calculation: for each question, the 2 derivative of q is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{({m}^{2})h}{(2q)} + \frac{({(q - m)}^{2})s}{(2q)} + \frac{kd}{q}\ with\ respect\ to\ q:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{\frac{1}{2}m^{2}h}{q} + \frac{1}{2}sq + \frac{\frac{1}{2}m^{2}s}{q} - ms + \frac{kd}{q}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{\frac{1}{2}m^{2}h}{q} + \frac{1}{2}sq + \frac{\frac{1}{2}m^{2}s}{q} - ms + \frac{kd}{q}\right)}{dq}\\=&\frac{\frac{1}{2}m^{2}h*-1}{q^{2}} + \frac{1}{2}s + \frac{\frac{1}{2}m^{2}s*-1}{q^{2}} + 0 + \frac{kd*-1}{q^{2}}\\=&\frac{-m^{2}h}{2q^{2}} + \frac{s}{2} - \frac{m^{2}s}{2q^{2}} - \frac{kd}{q^{2}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-m^{2}h}{2q^{2}} + \frac{s}{2} - \frac{m^{2}s}{2q^{2}} - \frac{kd}{q^{2}}\right)}{dq}\\=&\frac{-m^{2}h*-2}{2q^{3}} + 0 - \frac{m^{2}s*-2}{2q^{3}} - \frac{kd*-2}{q^{3}}\\=&\frac{m^{2}h}{q^{3}} + \frac{m^{2}s}{q^{3}} + \frac{2kd}{q^{3}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !