Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ xcot(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xcot(x)\right)}{dx}\\=&cot(x) + x*-csc^{2}(x)\\=&cot(x) - xcsc^{2}(x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( cot(x) - xcsc^{2}(x)\right)}{dx}\\=&-csc^{2}(x) - csc^{2}(x) - x*-2csc^{2}(x)cot(x)\\=&-2csc^{2}(x) + 2xcot(x)csc^{2}(x)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( -2csc^{2}(x) + 2xcot(x)csc^{2}(x)\right)}{dx}\\=&-2*-2csc^{2}(x)cot(x) + 2cot(x)csc^{2}(x) + 2x*-csc^{2}(x)csc^{2}(x) + 2xcot(x)*-2csc^{2}(x)cot(x)\\=&6cot(x)csc^{2}(x) - 2xcsc^{4}(x) - 4xcot^{2}(x)csc^{2}(x)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 6cot(x)csc^{2}(x) - 2xcsc^{4}(x) - 4xcot^{2}(x)csc^{2}(x)\right)}{dx}\\=&6*-csc^{2}(x)csc^{2}(x) + 6cot(x)*-2csc^{2}(x)cot(x) - 2csc^{4}(x) - 2x*-4csc^{4}(x)cot(x) - 4cot^{2}(x)csc^{2}(x) - 4x*-2cot(x)csc^{2}(x)csc^{2}(x) - 4xcot^{2}(x)*-2csc^{2}(x)cot(x)\\=&-8csc^{4}(x) - 16cot^{2}(x)csc^{2}(x) + 16xcot(x)csc^{4}(x) + 8xcot^{3}(x)csc^{2}(x)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return