Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of m is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(1 - \frac{1}{m})}^{ln(m)}\ with\ respect\ to\ m:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (\frac{-1}{m} + 1)^{ln(m)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (\frac{-1}{m} + 1)^{ln(m)}\right)}{dm}\\=&((\frac{-1}{m} + 1)^{ln(m)}((\frac{1}{(m)})ln(\frac{-1}{m} + 1) + \frac{(ln(m))(\frac{--1}{m^{2}} + 0)}{(\frac{-1}{m} + 1)}))\\=&\frac{(\frac{-1}{m} + 1)^{ln(m)}ln(\frac{-1}{m} + 1)}{m} + \frac{(\frac{-1}{m} + 1)^{ln(m)}ln(m)}{(\frac{-1}{m} + 1)m^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return