Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ e^{-({(x - X)}^{2})}e^{-({(y - Y)}^{2})}e^{cos(z)}e^{cos(arctan(\frac{y}{x}) - Z)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = e^{-x^{2} + 2Xx - X^{2}}e^{2yY - y^{2} - Y^{2}}e^{cos(z)}e^{cos(arctan(\frac{y}{x}) - Z)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( e^{-x^{2} + 2Xx - X^{2}}e^{2yY - y^{2} - Y^{2}}e^{cos(z)}e^{cos(arctan(\frac{y}{x}) - Z)}\right)}{dx}\\=&e^{-x^{2} + 2Xx - X^{2}}(-2x + 2X + 0)e^{2yY - y^{2} - Y^{2}}e^{cos(z)}e^{cos(arctan(\frac{y}{x}) - Z)} + e^{-x^{2} + 2Xx - X^{2}}e^{2yY - y^{2} - Y^{2}}(0 + 0 + 0)e^{cos(z)}e^{cos(arctan(\frac{y}{x}) - Z)} + e^{-x^{2} + 2Xx - X^{2}}e^{2yY - y^{2} - Y^{2}}e^{cos(z)}*-sin(z)*0e^{cos(arctan(\frac{y}{x}) - Z)} + e^{-x^{2} + 2Xx - X^{2}}e^{2yY - y^{2} - Y^{2}}e^{cos(z)}e^{cos(arctan(\frac{y}{x}) - Z)}*-sin(arctan(\frac{y}{x}) - Z)((\frac{(\frac{y*-1}{x^{2}})}{(1 + (\frac{y}{x})^{2})}) + 0)\\=&-2xe^{-x^{2} + 2Xx - X^{2}}e^{2yY - y^{2} - Y^{2}}e^{cos(z)}e^{cos(arctan(\frac{y}{x}) - Z)} + 2Xe^{-x^{2} + 2Xx - X^{2}}e^{2yY - y^{2} - Y^{2}}e^{cos(z)}e^{cos(arctan(\frac{y}{x}) - Z)} + \frac{ye^{-x^{2} + 2Xx - X^{2}}e^{2yY - y^{2} - Y^{2}}e^{cos(z)}e^{cos(arctan(\frac{y}{x}) - Z)}sin(arctan(\frac{y}{x}) - Z)}{(\frac{y^{2}}{x^{2}} + 1)x^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return