There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(2 - ln(x) - x)}{(x({e}^{x}))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{{e}^{(-x)}ln(x)}{x} + \frac{2{e}^{(-x)}}{x} - {e}^{(-x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{{e}^{(-x)}ln(x)}{x} + \frac{2{e}^{(-x)}}{x} - {e}^{(-x)}\right)}{dx}\\=& - \frac{-{e}^{(-x)}ln(x)}{x^{2}} - \frac{({e}^{(-x)}((-1)ln(e) + \frac{(-x)(0)}{(e)}))ln(x)}{x} - \frac{{e}^{(-x)}}{x(x)} + \frac{2*-{e}^{(-x)}}{x^{2}} + \frac{2({e}^{(-x)}((-1)ln(e) + \frac{(-x)(0)}{(e)}))}{x} - ({e}^{(-x)}((-1)ln(e) + \frac{(-x)(0)}{(e)}))\\=&\frac{{e}^{(-x)}ln(x)}{x^{2}} + \frac{{e}^{(-x)}ln(x)}{x} - \frac{3{e}^{(-x)}}{x^{2}} - \frac{2{e}^{(-x)}}{x} + {e}^{(-x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !