There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ 9{(3 - 4x)}^{4}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2304x^{4} - 6912x^{3} + 7776x^{2} - 3888x + 729\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2304x^{4} - 6912x^{3} + 7776x^{2} - 3888x + 729\right)}{dx}\\=&2304*4x^{3} - 6912*3x^{2} + 7776*2x - 3888 + 0\\=&9216x^{3} - 20736x^{2} + 15552x - 3888\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 9216x^{3} - 20736x^{2} + 15552x - 3888\right)}{dx}\\=&9216*3x^{2} - 20736*2x + 15552 + 0\\=&27648x^{2} - 41472x + 15552\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !