Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (\frac{(s(p + q + t - uy) + a(m - n - b))}{(s(2t - xu - yu) - 2ab)})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{sp}{(2st - sux - suy - 2ab)} + \frac{sq}{(2st - sux - suy - 2ab)} + \frac{st}{(2st - sux - suy - 2ab)} - \frac{suy}{(2st - sux - suy - 2ab)} + \frac{am}{(2st - sux - suy - 2ab)} - \frac{an}{(2st - sux - suy - 2ab)} - \frac{ab}{(2st - sux - suy - 2ab)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{sp}{(2st - sux - suy - 2ab)} + \frac{sq}{(2st - sux - suy - 2ab)} + \frac{st}{(2st - sux - suy - 2ab)} - \frac{suy}{(2st - sux - suy - 2ab)} + \frac{am}{(2st - sux - suy - 2ab)} - \frac{an}{(2st - sux - suy - 2ab)} - \frac{ab}{(2st - sux - suy - 2ab)}\right)}{dx}\\=&(\frac{-(0 - su + 0 + 0)}{(2st - sux - suy - 2ab)^{2}})sp + 0 + (\frac{-(0 - su + 0 + 0)}{(2st - sux - suy - 2ab)^{2}})sq + 0 + (\frac{-(0 - su + 0 + 0)}{(2st - sux - suy - 2ab)^{2}})st + 0 - (\frac{-(0 - su + 0 + 0)}{(2st - sux - suy - 2ab)^{2}})suy + 0 + (\frac{-(0 - su + 0 + 0)}{(2st - sux - suy - 2ab)^{2}})am + 0 - (\frac{-(0 - su + 0 + 0)}{(2st - sux - suy - 2ab)^{2}})an + 0 - (\frac{-(0 - su + 0 + 0)}{(2st - sux - suy - 2ab)^{2}})ab + 0\\=&\frac{s^{2}pu}{(2st - sux - suy - 2ab)^{2}} + \frac{s^{2}qu}{(2st - sux - suy - 2ab)^{2}} + \frac{s^{2}tu}{(2st - sux - suy - 2ab)^{2}} - \frac{s^{2}u^{2}y}{(2st - sux - suy - 2ab)^{2}} + \frac{suam}{(2st - sux - suy - 2ab)^{2}} - \frac{suan}{(2st - sux - suy - 2ab)^{2}} - \frac{suab}{(2st - sux - suy - 2ab)^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return