There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{(2x - 4){e}^{x}}{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2{e}^{x} - \frac{4{e}^{x}}{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2{e}^{x} - \frac{4{e}^{x}}{x}\right)}{dx}\\=&2({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) - \frac{4*-{e}^{x}}{x^{2}} - \frac{4({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))}{x}\\=&2{e}^{x} + \frac{4{e}^{x}}{x^{2}} - \frac{4{e}^{x}}{x}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 2{e}^{x} + \frac{4{e}^{x}}{x^{2}} - \frac{4{e}^{x}}{x}\right)}{dx}\\=&2({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + \frac{4*-2{e}^{x}}{x^{3}} + \frac{4({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))}{x^{2}} - \frac{4*-{e}^{x}}{x^{2}} - \frac{4({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))}{x}\\=&2{e}^{x} - \frac{8{e}^{x}}{x^{3}} + \frac{8{e}^{x}}{x^{2}} - \frac{4{e}^{x}}{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !