There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(4(sqrt(3))tan(x))}{(sqrt(3) + tan(x))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{4tan(x)sqrt(3)}{(sqrt(3) + tan(x))}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{4tan(x)sqrt(3)}{(sqrt(3) + tan(x))}\right)}{dx}\\=&4(\frac{-(0*\frac{1}{2}*3^{\frac{1}{2}} + sec^{2}(x)(1))}{(sqrt(3) + tan(x))^{2}})tan(x)sqrt(3) + \frac{4sec^{2}(x)(1)sqrt(3)}{(sqrt(3) + tan(x))} + \frac{4tan(x)*0*\frac{1}{2}*3^{\frac{1}{2}}}{(sqrt(3) + tan(x))}\\=&\frac{-4tan(x)sqrt(3)sec^{2}(x)}{(sqrt(3) + tan(x))^{2}} + \frac{4sqrt(3)sec^{2}(x)}{(sqrt(3) + tan(x))}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !