There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ xxxxxx + xdhystan(-s)gsffdz + zdgbbx\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{6} + d^{2}hys^{2}gf^{2}zxtan(-s) + dgzb^{2}x\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{6} + d^{2}hys^{2}gf^{2}zxtan(-s) + dgzb^{2}x\right)}{dx}\\=&6x^{5} + d^{2}hys^{2}gf^{2}ztan(-s) + d^{2}hys^{2}gf^{2}zxsec^{2}(-s)(0) + dgzb^{2}\\=&6x^{5} + d^{2}hys^{2}gf^{2}ztan(-s) + dgzb^{2}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !