There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 32{(1 - 40x)}^{4} + {(2{(1 + 8x)}^{2} - 4{(1 - 40x)}^{2})}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 121257984x^{4} - 12607488x^{3} + 456192x^{2} - 6528x + 36\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 121257984x^{4} - 12607488x^{3} + 456192x^{2} - 6528x + 36\right)}{dx}\\=&121257984*4x^{3} - 12607488*3x^{2} + 456192*2x - 6528 + 0\\=&485031936x^{3} - 37822464x^{2} + 912384x - 6528\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !