There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(3 - 3{t}^{2})}{(2 + 2{t}^{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{3t^{2}}{(2t^{2} + 2)} + \frac{3}{(2t^{2} + 2)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{3t^{2}}{(2t^{2} + 2)} + \frac{3}{(2t^{2} + 2)}\right)}{dx}\\=& - 3(\frac{-(0 + 0)}{(2t^{2} + 2)^{2}})t^{2} + 0 + 3(\frac{-(0 + 0)}{(2t^{2} + 2)^{2}})\\=&0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !