There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sqrt(\frac{(\frac{1}{(n - 1)})({(x - x)}^{2} + {(x*2 - x)}^{2})}{sqrt(n)})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sqrt(\frac{x^{2}}{(n - 1)sqrt(n)})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sqrt(\frac{x^{2}}{(n - 1)sqrt(n)})\right)}{dx}\\=&\frac{(\frac{(\frac{-(0 + 0)}{(n - 1)^{2}})x^{2}}{sqrt(n)} + \frac{2x}{(n - 1)sqrt(n)} + \frac{x^{2}*-0*\frac{1}{2}}{(n - 1)(n)(n)^{\frac{1}{2}}})*\frac{1}{2}}{(\frac{x^{2}}{(n - 1)sqrt(n)})^{\frac{1}{2}}}\\=&\frac{1}{(n - 1)^{\frac{1}{2}}sqrt(n)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !