Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ -{e}^{x} - sin(x) + 2x + 1\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -{e}^{x} - sin(x) + 2x + 1\right)}{dx}\\=&-({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) - cos(x) + 2 + 0\\=&-{e}^{x} - cos(x) + 2\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( -{e}^{x} - cos(x) + 2\right)}{dx}\\=&-({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) - -sin(x) + 0\\=&-{e}^{x} + sin(x)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return