There are 1 questions in this calculation: for each question, the 10 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 10th\ derivative\ of\ function\ ln(1 + i{x}^{2})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(ix^{2} + 1)\\\\ &\color{blue}{The\ 10th\ derivative\ of\ function:} \\=&\frac{-371589120i^{10}x^{10}}{(ix^{2} + 1)^{10}} + \frac{928972800i^{9}x^{8}}{(ix^{2} + 1)^{9}} - \frac{812851200i^{8}x^{6}}{(ix^{2} + 1)^{8}} + \frac{290304000i^{7}x^{4}}{(ix^{2} + 1)^{7}} - \frac{36288000i^{6}x^{2}}{(ix^{2} + 1)^{6}} + \frac{725760i^{5}}{(ix^{2} + 1)^{5}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !