There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln({(1 + 0.8144(1 - sqrt(x)))}^{2})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(-0.8144sqrt(x) + 1.8144)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(-0.8144sqrt(x) + 1.8144)\right)}{dx}\\=&\frac{(-0.8144*0.5x^{\frac{1}{2}} + 0)}{(-0.8144sqrt(x) + 1.8144)}\\=&\frac{-0.4072x^{\frac{1}{2}}}{(-0.8144sqrt(x) + 1.8144)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !