Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 3 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ third\ derivative\ of\ function\ \frac{sin(x)}{(1 + {x}^{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{sin(x)}{(x^{2} + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{sin(x)}{(x^{2} + 1)}\right)}{dx}\\=&(\frac{-(2x + 0)}{(x^{2} + 1)^{2}})sin(x) + \frac{cos(x)}{(x^{2} + 1)}\\=&\frac{-2xsin(x)}{(x^{2} + 1)^{2}} + \frac{cos(x)}{(x^{2} + 1)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-2xsin(x)}{(x^{2} + 1)^{2}} + \frac{cos(x)}{(x^{2} + 1)}\right)}{dx}\\=&-2(\frac{-2(2x + 0)}{(x^{2} + 1)^{3}})xsin(x) - \frac{2sin(x)}{(x^{2} + 1)^{2}} - \frac{2xcos(x)}{(x^{2} + 1)^{2}} + (\frac{-(2x + 0)}{(x^{2} + 1)^{2}})cos(x) + \frac{-sin(x)}{(x^{2} + 1)}\\=&\frac{8x^{2}sin(x)}{(x^{2} + 1)^{3}} - \frac{2sin(x)}{(x^{2} + 1)^{2}} - \frac{4xcos(x)}{(x^{2} + 1)^{2}} - \frac{sin(x)}{(x^{2} + 1)}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{8x^{2}sin(x)}{(x^{2} + 1)^{3}} - \frac{2sin(x)}{(x^{2} + 1)^{2}} - \frac{4xcos(x)}{(x^{2} + 1)^{2}} - \frac{sin(x)}{(x^{2} + 1)}\right)}{dx}\\=&8(\frac{-3(2x + 0)}{(x^{2} + 1)^{4}})x^{2}sin(x) + \frac{8*2xsin(x)}{(x^{2} + 1)^{3}} + \frac{8x^{2}cos(x)}{(x^{2} + 1)^{3}} - 2(\frac{-2(2x + 0)}{(x^{2} + 1)^{3}})sin(x) - \frac{2cos(x)}{(x^{2} + 1)^{2}} - 4(\frac{-2(2x + 0)}{(x^{2} + 1)^{3}})xcos(x) - \frac{4cos(x)}{(x^{2} + 1)^{2}} - \frac{4x*-sin(x)}{(x^{2} + 1)^{2}} - (\frac{-(2x + 0)}{(x^{2} + 1)^{2}})sin(x) - \frac{cos(x)}{(x^{2} + 1)}\\=&\frac{-48x^{3}sin(x)}{(x^{2} + 1)^{4}} + \frac{24xsin(x)}{(x^{2} + 1)^{3}} + \frac{24x^{2}cos(x)}{(x^{2} + 1)^{3}} - \frac{6cos(x)}{(x^{2} + 1)^{2}} + \frac{6xsin(x)}{(x^{2} + 1)^{2}} - \frac{cos(x)}{(x^{2} + 1)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return