Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ \frac{3{x}^{2}}{4} + 7x + 5\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{3}{4}x^{2} + 7x + 5\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{3}{4}x^{2} + 7x + 5\right)}{dx}\\=&\frac{3}{4}*2x + 7 + 0\\=&\frac{3x}{2} + 7\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{3x}{2} + 7\right)}{dx}\\=&\frac{3}{2} + 0\\=&\frac{3}{2}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{3}{2}\right)}{dx}\\=&0\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dx}\\=&0\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return