There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ log_{e^{1}}^{\frac{m}{(m - Mx)}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = log_{e^{1}}^{\frac{m}{(m - Mx)}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( log_{e^{1}}^{\frac{m}{(m - Mx)}}\right)}{dx}\\=&(\frac{(\frac{((\frac{-(0 - M)}{(m - Mx)^{2}})m + 0)}{(\frac{m}{(m - Mx)})} - \frac{(e^{1}*0)log_{e^{1}}^{\frac{m}{(m - Mx)}}}{(e^{1})})}{(ln(e^{1}))})\\=&\frac{M}{(m - Mx)ln(e^{1})}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !