There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{{e}^{(-2x)}}{sqrt(1 - 4x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{{e}^{(-2x)}}{sqrt(-4x + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{{e}^{(-2x)}}{sqrt(-4x + 1)}\right)}{dx}\\=&\frac{({e}^{(-2x)}((-2)ln(e) + \frac{(-2x)(0)}{(e)}))}{sqrt(-4x + 1)} + \frac{{e}^{(-2x)}*-(-4 + 0)*\frac{1}{2}}{(-4x + 1)(-4x + 1)^{\frac{1}{2}}}\\=&\frac{-2{e}^{(-2x)}}{sqrt(-4x + 1)} + \frac{2{e}^{(-2x)}}{(-4x + 1)^{\frac{3}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !