Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(2{x}^{3} + 2{x}^{2} + 7)}{(3{x}^{2} + 4x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{2x^{3}}{(3x^{2} + 4x)} + \frac{2x^{2}}{(3x^{2} + 4x)} + \frac{7}{(3x^{2} + 4x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{2x^{3}}{(3x^{2} + 4x)} + \frac{2x^{2}}{(3x^{2} + 4x)} + \frac{7}{(3x^{2} + 4x)}\right)}{dx}\\=&2(\frac{-(3*2x + 4)}{(3x^{2} + 4x)^{2}})x^{3} + \frac{2*3x^{2}}{(3x^{2} + 4x)} + 2(\frac{-(3*2x + 4)}{(3x^{2} + 4x)^{2}})x^{2} + \frac{2*2x}{(3x^{2} + 4x)} + 7(\frac{-(3*2x + 4)}{(3x^{2} + 4x)^{2}})\\=&\frac{-12x^{4}}{(3x^{2} + 4x)^{2}} - \frac{20x^{3}}{(3x^{2} + 4x)^{2}} + \frac{6x^{2}}{(3x^{2} + 4x)} - \frac{8x^{2}}{(3x^{2} + 4x)^{2}} + \frac{4x}{(3x^{2} + 4x)} - \frac{42x}{(3x^{2} + 4x)^{2}} - \frac{28}{(3x^{2} + 4x)^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return