Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ log_{3}^{\frac{4}{(2 - x)} - 1}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = log_{3}^{\frac{4}{(-x + 2)} - 1}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( log_{3}^{\frac{4}{(-x + 2)} - 1}\right)}{dx}\\=&(\frac{(\frac{(4(\frac{-(-1 + 0)}{(-x + 2)^{2}}) + 0)}{(\frac{4}{(-x + 2)} - 1)} - \frac{(0)log_{3}^{\frac{4}{(-x + 2)} - 1}}{(3)})}{(ln(3))})\\=&\frac{4}{(-x + 2)^{2}(\frac{4}{(-x + 2)} - 1)ln(3)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return