There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ e{\frac{1}{3}}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {\frac{1}{3}}^{x}e\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {\frac{1}{3}}^{x}e\right)}{dx}\\=&({\frac{1}{3}}^{x}((1)ln(\frac{1}{3}) + \frac{(x)(0)}{(\frac{1}{3})}))e + {\frac{1}{3}}^{x}*0\\=&{\frac{1}{3}}^{x}eln(\frac{1}{3})\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !