There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ -2.623{e}^{(-8{x}^{3})} + 5.869{e}^{(-5{x}^{2})} - 0.06063x + 53.45\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = -2.623{e}^{(-8x)} + 5.869{e}^{(-5x)} - 0.06063x + 53.45\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -2.623{e}^{(-8x)} + 5.869{e}^{(-5x)} - 0.06063x + 53.45\right)}{dx}\\=&-2.623({e}^{(-8x)}((-8)ln(e) + \frac{(-8x)(0)}{(e)})) + 5.869({e}^{(-5x)}((-5)ln(e) + \frac{(-5x)(0)}{(e)})) - 0.06063 + 0\\=&20.984{e}^{(-8x)} - 29.345{e}^{(-5x)} - 0.06063\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !