Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (e^{x} - \frac{1}{2}x*2 + 1)ln(x + 1) - 2x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = e^{x}ln(x + 1) - xln(x + 1) + ln(x + 1) - 2x\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( e^{x}ln(x + 1) - xln(x + 1) + ln(x + 1) - 2x\right)}{dx}\\=&e^{x}ln(x + 1) + \frac{e^{x}(1 + 0)}{(x + 1)} - ln(x + 1) - \frac{x(1 + 0)}{(x + 1)} + \frac{(1 + 0)}{(x + 1)} - 2\\=&e^{x}ln(x + 1) + \frac{e^{x}}{(x + 1)} - ln(x + 1) - \frac{x}{(x + 1)} + \frac{1}{(x + 1)} - 2\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return