There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ({x}^{2})sqrt(1 + {x}^{2}) + (\frac{2}{3})sqrt({({x}^{2})}^{3})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{2}sqrt(x^{2} + 1) + \frac{2}{3}sqrt(x^{6})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{2}sqrt(x^{2} + 1) + \frac{2}{3}sqrt(x^{6})\right)}{dx}\\=&2xsqrt(x^{2} + 1) + \frac{x^{2}(2x + 0)*\frac{1}{2}}{(x^{2} + 1)^{\frac{1}{2}}} + \frac{\frac{2}{3}*6x^{5}*\frac{1}{2}}{(x^{6})^{\frac{1}{2}}}\\=&2xsqrt(x^{2} + 1) + \frac{x^{3}}{(x^{2} + 1)^{\frac{1}{2}}} + 2x^{2}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !