There are 1 questions in this calculation: for each question, the 3 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ third\ derivative\ of\ function\ {({x}^{2} + 3x - 4)}^{4}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{8} + 12x^{7} + 38x^{6} - 36x^{5} - 255x^{4} + 144x^{3} + 608x^{2} - 768x + 256\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{8} + 12x^{7} + 38x^{6} - 36x^{5} - 255x^{4} + 144x^{3} + 608x^{2} - 768x + 256\right)}{dx}\\=&8x^{7} + 12*7x^{6} + 38*6x^{5} - 36*5x^{4} - 255*4x^{3} + 144*3x^{2} + 608*2x - 768 + 0\\=&8x^{7} + 84x^{6} + 228x^{5} - 180x^{4} - 1020x^{3} + 432x^{2} + 1216x - 768\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 8x^{7} + 84x^{6} + 228x^{5} - 180x^{4} - 1020x^{3} + 432x^{2} + 1216x - 768\right)}{dx}\\=&8*7x^{6} + 84*6x^{5} + 228*5x^{4} - 180*4x^{3} - 1020*3x^{2} + 432*2x + 1216 + 0\\=&56x^{6} + 504x^{5} + 1140x^{4} - 720x^{3} - 3060x^{2} + 864x + 1216\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 56x^{6} + 504x^{5} + 1140x^{4} - 720x^{3} - 3060x^{2} + 864x + 1216\right)}{dx}\\=&56*6x^{5} + 504*5x^{4} + 1140*4x^{3} - 720*3x^{2} - 3060*2x + 864 + 0\\=&336x^{5} + 2520x^{4} + 4560x^{3} - 2160x^{2} - 6120x + 864\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !