There are 1 questions in this calculation: for each question, the 1 derivative of k is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(1 - {e}^{(ak)})}^{k}\ with\ respect\ to\ k:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (-{e}^{(ak)} + 1)^{k}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (-{e}^{(ak)} + 1)^{k}\right)}{dk}\\=&((-{e}^{(ak)} + 1)^{k}((1)ln(-{e}^{(ak)} + 1) + \frac{(k)(-({e}^{(ak)}((a)ln(e) + \frac{(ak)(0)}{(e)})) + 0)}{(-{e}^{(ak)} + 1)}))\\=&(-{e}^{(ak)} + 1)^{k}ln(-{e}^{(ak)} + 1) - \frac{ak{e}^{(ak)}(-{e}^{(ak)} + 1)^{k}}{(-{e}^{(ak)} + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !