Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of t is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(1830{t}^{9} + 183)}{({t}^{10} + t + 1)} + {e}^{0.26}t + 5\ with\ respect\ to\ t:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1830t^{9}}{(t^{10} + t + 1)} + te^{\frac{13}{50}} + \frac{183}{(t^{10} + t + 1)} + 5\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1830t^{9}}{(t^{10} + t + 1)} + te^{\frac{13}{50}} + \frac{183}{(t^{10} + t + 1)} + 5\right)}{dt}\\=&1830(\frac{-(10t^{9} + 1 + 0)}{(t^{10} + t + 1)^{2}})t^{9} + \frac{1830*9t^{8}}{(t^{10} + t + 1)} + e^{\frac{13}{50}} + \frac{t*0.26*0}{e^{\frac{37}{50}}} + 183(\frac{-(10t^{9} + 1 + 0)}{(t^{10} + t + 1)^{2}}) + 0\\=&\frac{-18300t^{18}}{(t^{10} + t + 1)(t^{10} + t + 1)} - \frac{1830t^{9}}{(t^{10} + t + 1)(t^{10} + t + 1)} + \frac{16470t^{8}}{(t^{10} + t + 1)} + e^{\frac{13}{50}} - \frac{1830t^{9}}{(t^{10} + t + 1)(t^{10} + t + 1)} - \frac{183}{(t^{10} + t + 1)(t^{10} + t + 1)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return