There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{six}{(x(cos(x) + 2))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{six}{(xcos(x) + 2x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{six}{(xcos(x) + 2x)}\right)}{dx}\\=&(\frac{-(cos(x) + x*-sin(x) + 2)}{(xcos(x) + 2x)^{2}})six + \frac{si}{(xcos(x) + 2x)}\\=&\frac{-sixcos(x)}{(xcos(x) + 2x)^{2}} + \frac{six^{2}sin(x)}{(xcos(x) + 2x)^{2}} - \frac{2six}{(xcos(x) + 2x)^{2}} + \frac{si}{(xcos(x) + 2x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !