There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {e}^{x}*2x + 2{e}^{x} - 2{\frac{1}{x}}^{2} + 2x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2x{e}^{x} + 2{e}^{x} - \frac{2}{x^{2}} + 2x\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2x{e}^{x} + 2{e}^{x} - \frac{2}{x^{2}} + 2x\right)}{dx}\\=&2{e}^{x} + 2x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + 2({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) - \frac{2*-2}{x^{3}} + 2\\=&4{e}^{x} + 2x{e}^{x} + \frac{4}{x^{3}} + 2\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !