There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 2x + (1 - 2a)xln(x) + \frac{a}{x} - 2(2a - x) - (1 + 2a)ln(2a - x) - \frac{2}{(2a - x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = xln(x) + 4x - 2axln(x) + \frac{a}{x} - 2aln(2a - x) - ln(2a - x) - 4a - \frac{2}{(2a - x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xln(x) + 4x - 2axln(x) + \frac{a}{x} - 2aln(2a - x) - ln(2a - x) - 4a - \frac{2}{(2a - x)}\right)}{dx}\\=&ln(x) + \frac{x}{(x)} + 4 - 2aln(x) - \frac{2ax}{(x)} + \frac{a*-1}{x^{2}} - \frac{2a(0 - 1)}{(2a - x)} - \frac{(0 - 1)}{(2a - x)} + 0 - 2(\frac{-(0 - 1)}{(2a - x)^{2}})\\=&ln(x) - 2aln(x) - \frac{a}{x^{2}} - 2a + \frac{2a}{(2a - x)} - \frac{2}{(2a - x)^{2}} + \frac{1}{(2a - x)} + 5\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !