There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{0.6871x}{2} + \frac{0.1033*40x}{2(1.2096x - 170)} + \frac{0.7904}{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 0.34355x + \frac{2.066x}{(1.2096x - 170)} + 0.3952\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 0.34355x + \frac{2.066x}{(1.2096x - 170)} + 0.3952\right)}{dx}\\=&0.34355 + 2.066(\frac{-(1.2096 + 0)}{(1.2096x - 170)^{2}})x + \frac{2.066}{(1.2096x - 170)} + 0\\=&\frac{-2.4990336x}{(1.2096x - 170)(1.2096x - 170)} + \frac{2.066}{(1.2096x - 170)} + 0.34355\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !