There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{k}{(1 + {(\frac{x}{c})}^{b})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{k}{((\frac{x}{c})^{b} + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{k}{((\frac{x}{c})^{b} + 1)}\right)}{dx}\\=&(\frac{-(((\frac{x}{c})^{b}((0)ln(\frac{x}{c}) + \frac{(b)(\frac{1}{c})}{(\frac{x}{c})})) + 0)}{((\frac{x}{c})^{b} + 1)^{2}})k + 0\\=&\frac{-kb(\frac{x}{c})^{b}}{((\frac{x}{c})^{b} + 1)^{2}x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !