There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(6 + x + y)}^{2} + {(2 - 3x - 3y - xy)}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 10x^{2} + 6yx^{2} + y^{2}x^{2} + 16yx + 6y^{2}x + 10y^{2} + 40\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 10x^{2} + 6yx^{2} + y^{2}x^{2} + 16yx + 6y^{2}x + 10y^{2} + 40\right)}{dx}\\=&10*2x + 6y*2x + y^{2}*2x + 16y + 6y^{2} + 0 + 0\\=&20x + 12yx + 2y^{2}x + 16y + 6y^{2}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !