There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({x}^{5} + 1 - x + 1)}{({x}^{5} + 1)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x^{5}}{(x^{5} + 1)} - \frac{x}{(x^{5} + 1)} + \frac{2}{(x^{5} + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x^{5}}{(x^{5} + 1)} - \frac{x}{(x^{5} + 1)} + \frac{2}{(x^{5} + 1)}\right)}{dx}\\=&(\frac{-(5x^{4} + 0)}{(x^{5} + 1)^{2}})x^{5} + \frac{5x^{4}}{(x^{5} + 1)} - (\frac{-(5x^{4} + 0)}{(x^{5} + 1)^{2}})x - \frac{1}{(x^{5} + 1)} + 2(\frac{-(5x^{4} + 0)}{(x^{5} + 1)^{2}})\\=&\frac{-5x^{9}}{(x^{5} + 1)^{2}} + \frac{5x^{4}}{(x^{5} + 1)} + \frac{5x^{5}}{(x^{5} + 1)^{2}} - \frac{10x^{4}}{(x^{5} + 1)^{2}} - \frac{1}{(x^{5} + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !