There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ x + 1 - sqrt(xx - x + 1)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x - sqrt(x^{2} - x + 1) + 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x - sqrt(x^{2} - x + 1) + 1\right)}{dx}\\=&1 - \frac{(2x - 1 + 0)*\frac{1}{2}}{(x^{2} - x + 1)^{\frac{1}{2}}} + 0\\=& - \frac{x}{(x^{2} - x + 1)^{\frac{1}{2}}} + \frac{1}{2(x^{2} - x + 1)^{\frac{1}{2}}} + 1\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !