There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ xxxln(xx) + xxxxln(x) + xxxx\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{3}ln(x^{2}) + x^{4}ln(x) + x^{4}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{3}ln(x^{2}) + x^{4}ln(x) + x^{4}\right)}{dx}\\=&3x^{2}ln(x^{2}) + \frac{x^{3}*2x}{(x^{2})} + 4x^{3}ln(x) + \frac{x^{4}}{(x)} + 4x^{3}\\=&3x^{2}ln(x^{2}) + 4x^{3}ln(x) + 2x^{2} + 5x^{3}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !