There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(25 - 20x)}{({(100x - x(1 - x))}^{\frac{1}{2}})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{20x}{(x^{2} + 99x)^{\frac{1}{2}}} + \frac{25}{(x^{2} + 99x)^{\frac{1}{2}}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{20x}{(x^{2} + 99x)^{\frac{1}{2}}} + \frac{25}{(x^{2} + 99x)^{\frac{1}{2}}}\right)}{dx}\\=& - 20(\frac{\frac{-1}{2}(2x + 99)}{(x^{2} + 99x)^{\frac{3}{2}}})x - \frac{20}{(x^{2} + 99x)^{\frac{1}{2}}} + 25(\frac{\frac{-1}{2}(2x + 99)}{(x^{2} + 99x)^{\frac{3}{2}}})\\=&\frac{20x^{2}}{(x^{2} + 99x)^{\frac{3}{2}}} + \frac{965x}{(x^{2} + 99x)^{\frac{3}{2}}} - \frac{20}{(x^{2} + 99x)^{\frac{1}{2}}} - \frac{2475}{2(x^{2} + 99x)^{\frac{3}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !