Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{1.995}{(199 - 200x)} + 2.995\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1.995}{(-200x + 199)} + 2.995\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1.995}{(-200x + 199)} + 2.995\right)}{dx}\\=&1.995(\frac{-(-200 + 0)}{(-200x + 199)^{2}}) + 0\\=&\frac{399}{(-200x + 199)(-200x + 199)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{399}{(-200x + 199)(-200x + 199)}\right)}{dx}\\=&\frac{399(\frac{-(-200 + 0)}{(-200x + 199)^{2}})}{(-200x + 199)} + \frac{399(\frac{-(-200 + 0)}{(-200x + 199)^{2}})}{(-200x + 199)}\\=&\frac{79800}{(-200x + 199)(-200x + 199)(-200x + 199)} + \frac{79800}{(-200x + 199)(-200x + 199)(-200x + 199)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return