Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sin(sqrt(cos(sqrt(tan(sqrt(sin(sqrt(cos(sqrt(tan(x)))))))))))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sin(sqrt(cos(sqrt(tan(sqrt(sin(sqrt(cos(sqrt(tan(x)))))))))))\right)}{dx}\\=&\frac{cos(sqrt(cos(sqrt(tan(sqrt(sin(sqrt(cos(sqrt(tan(x)))))))))))*-sin(sqrt(tan(sqrt(sin(sqrt(cos(sqrt(tan(x)))))))))sec^{2}(sqrt(sin(sqrt(cos(sqrt(tan(x)))))))(\frac{cos(sqrt(cos(sqrt(tan(x)))))*-sin(sqrt(tan(x)))sec^{2}(x)(1)*\frac{1}{2}*\frac{1}{2}*\frac{1}{2}}{(tan(x))^{\frac{1}{2}}(cos(sqrt(tan(x))))^{\frac{1}{2}}(sin(sqrt(cos(sqrt(tan(x))))))^{\frac{1}{2}}})*\frac{1}{2}*\frac{1}{2}}{(tan(sqrt(sin(sqrt(cos(sqrt(tan(x))))))))^{\frac{1}{2}}(cos(sqrt(tan(sqrt(sin(sqrt(cos(sqrt(tan(x))))))))))^{\frac{1}{2}}}\\=&\frac{sin(sqrt(tan(sqrt(sin(sqrt(cos(sqrt(tan(x)))))))))sin(sqrt(tan(x)))cos(sqrt(cos(sqrt(tan(sqrt(sin(sqrt(cos(sqrt(tan(x)))))))))))cos(sqrt(cos(sqrt(tan(x)))))sec^{2}(sqrt(sin(sqrt(cos(sqrt(tan(x)))))))sec^{2}(x)}{32sin^{\frac{1}{2}}(sqrt(cos(sqrt(tan(x)))))cos^{\frac{1}{2}}(sqrt(tan(x)))cos^{\frac{1}{2}}(sqrt(tan(sqrt(sin(sqrt(cos(sqrt(tan(x)))))))))tan^{\frac{1}{2}}(sqrt(sin(sqrt(cos(sqrt(tan(x)))))))tan^{\frac{1}{2}}(x)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return