There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ({5}^{2} - lg(2) - lg(5) - ln(e + ln(2)e^{lg(100)}))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - lg(2) - lg(5) - ln(e^{lg(100)}ln(2) + e) + 25\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - lg(2) - lg(5) - ln(e^{lg(100)}ln(2) + e) + 25\right)}{dx}\\=& - \frac{0}{ln{10}(2)} - \frac{0}{ln{10}(5)} - \frac{(\frac{e^{lg(100)}*0ln(2)}{ln{10}(100)} + \frac{e^{lg(100)}*0}{(2)} + 0)}{(e^{lg(100)}ln(2) + e)} + 0\\=&0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !