There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(ax + 113c)}{(c{x}^{2} + a)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{ax}{(cx^{2} + a)} + \frac{113c}{(cx^{2} + a)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{ax}{(cx^{2} + a)} + \frac{113c}{(cx^{2} + a)}\right)}{dx}\\=&(\frac{-(c*2x + 0)}{(cx^{2} + a)^{2}})ax + \frac{a}{(cx^{2} + a)} + 113(\frac{-(c*2x + 0)}{(cx^{2} + a)^{2}})c + 0\\=&\frac{-2acx^{2}}{(cx^{2} + a)^{2}} + \frac{a}{(cx^{2} + a)} - \frac{226c^{2}x}{(cx^{2} + a)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !