There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ -ln(1 - x - y) - ln(x) - ln(y)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = -ln(-x - y + 1) - ln(x) - ln(y)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -ln(-x - y + 1) - ln(x) - ln(y)\right)}{dx}\\=&\frac{-(-1 + 0 + 0)}{(-x - y + 1)} - \frac{1}{(x)} - \frac{0}{(y)}\\=&\frac{1}{(-x - y + 1)} - \frac{1}{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !