Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {({x}^{2} - 2)}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (x^{2} - 2)^{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (x^{2} - 2)^{x}\right)}{dx}\\=&((x^{2} - 2)^{x}((1)ln(x^{2} - 2) + \frac{(x)(2x + 0)}{(x^{2} - 2)}))\\=&(x^{2} - 2)^{x}ln(x^{2} - 2) + \frac{2x^{2}(x^{2} - 2)^{x}}{(x^{2} - 2)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( (x^{2} - 2)^{x}ln(x^{2} - 2) + \frac{2x^{2}(x^{2} - 2)^{x}}{(x^{2} - 2)}\right)}{dx}\\=&((x^{2} - 2)^{x}((1)ln(x^{2} - 2) + \frac{(x)(2x + 0)}{(x^{2} - 2)}))ln(x^{2} - 2) + \frac{(x^{2} - 2)^{x}(2x + 0)}{(x^{2} - 2)} + 2(\frac{-(2x + 0)}{(x^{2} - 2)^{2}})x^{2}(x^{2} - 2)^{x} + \frac{2*2x(x^{2} - 2)^{x}}{(x^{2} - 2)} + \frac{2x^{2}((x^{2} - 2)^{x}((1)ln(x^{2} - 2) + \frac{(x)(2x + 0)}{(x^{2} - 2)}))}{(x^{2} - 2)}\\=&(x^{2} - 2)^{x}ln^{2}(x^{2} - 2) + \frac{4x^{2}(x^{2} - 2)^{x}ln(x^{2} - 2)}{(x^{2} - 2)} + \frac{6x(x^{2} - 2)^{x}}{(x^{2} - 2)} - \frac{4x^{3}(x^{2} - 2)^{x}}{(x^{2} - 2)^{2}} + \frac{4x^{4}(x^{2} - 2)^{x}}{(x^{2} - 2)^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return